
Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 1

Memory

Introduction

In this chapter we will take a look at some memory issues:

 How to write to FLASH in-system.

 How to read/write from EEPROM.

 How to use bit-banding.

 How to configure the Memory Protection Unit (MPU) and deal with faults.

Agenda

Memory Control...

Introduction to ARM® Cortex™-M4F and Peripherals

Code Composer Studio

Introduction to StellarisWare,
Initialization and GPIO

Interrupts and the Timers

ADC12

Hibernation Module

USB

Memory

Floating-Point

BoosterPacks and grLib

Synchronous Serial Interface

UART

µDMA

Chapter Topics

8 - 2 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Chapter Topics

Memory ...8-1

Chapter Topics ...8-2

Internal Memory ..8-3

Flash ..8-4

EEPROM ...8-5

SRAM ...8-6

Bit-Banding ..8-7

Memory Protection Unit ..8-8

Priority Levels ..8-9

Lab 8: Memory and the MPU ..8-10
Objective..8-10
Procedure ...8-11

 Internal Memory

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 3

Internal Memory

Flash, SRAM and ROM Control

Memory Blocks and
Control Logic for:

 SRAM

 ROM

 Flash

EEPROM Control...

EEPROM Control

 EEPROM Block and Control Logic

 EEPROM block is connected to the
AHB (Advanced High Performance
Bus)

Flash Features...

Flash

8 - 4 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Flash

Flash

 256KB / 40MHz starting at 0x00000000

 Organized in 1KB independently erasable blocks

 Code fetches and data access occur over separate buses

 Below 40MHz, Flash access is single cycle

 Above 40MHz, the prefetch buffer fetches two 32-bit words/cycle.

No wait states for sequential code.

 Branch speculation avoids wait state on some branches

 Programmable write and execution protection available

 Simple programming interface

0x00000000 Flash

0x01000000 ROM

0x20000000 SRAM

0x22000000 Bit-banded SRAM

0x40000000 Peripherals & EEPROM

0x42000000 Bit-banded Peripherals

0xE0000000 Instrumentation, ETM, etc. EEPROM...

 EEPROM

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 5

EEPROM

EEPROM

 2KB of memory starting at 0x400AF000 in Peripheral space

 Accessible as 512 32-bit words

 32 blocks of 16 words (64 bytes) with access protection per block

 Built-in wear leveling with endurance of 500K writes

 Lock protection option for the whole peripheral as well as per

block using 32-bit to 96-bit codes

 Interrupt support for write completion to avoid polling

 Random and sequential read/write access (4 cycles max/word)

0x00000000 Flash

0x01000000 ROM

0x20000000 SRAM

0x22000000 Bit-banded SRAM

0x40000000 Peripherals & EEPROM

0x42000000 Bit-banded Peripherals

0xE0000000 Instrumentation, ETM, etc. SRAM...

SRAM

8 - 6 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

SRAM

SRAM

 32KB / 80MHz starting at 0x20000000

 Bit banded to 0x22000000

 Can hold code or data

0x00000000 Flash

0x01000000 ROM

0x20000000 SRAM

0x22000000 Bit-banded SRAM

0x40000000 Peripherals & EEPROM

0x42000000 Bit-banded Peripherals

0xE0000000 Instrumentation, ETM, etc. Bit-Banding...

 Bit-Banding

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 7

Bit-Banding

Bit-Banding

 Reduces the number of read-modify-write operations

 SRAM and Peripheral space use address aliases to access

individual bits in a single, atomic operation

 SRAM starts at base address 0x20000000

Bit-banded SRAM starts at base address 0x2200000

 Peripheral space starts at base address 0x40000000

Bit-banded peripheral space starts at base address 0x42000000

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4)

For example, bit-7 at address 0x20002000 is:

0x20002000 + (0x2000 * 0x20) + (7 * 4) = 0x2204001C

MPU...

Memory Protection Unit

8 - 8 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Memory Protection Unit

Memory Protection Unit (MPU)

 Defines 8 separate memory regions plus a background region

accessible only from privileged mode

 Regions of 256 bytes or more are divided into 8 equal-sized

sub-regions

 MPU definitions for all regions include:

• Location

• Size

• Access permissions

• Memory attributes

 Accessing a prohibited region causes a memory management

fault

Privilege Levels...

 Priority Levels

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 9

Priority Levels

Cortex M4 Privilege Levels

 Privilege levels offer additional protection for software,

particularly operating systems

 Unprivileged : software has …

• Limited access to the Priority Mask register

• No access to the system timer, NVIC, or system control block

• Possibly restricted access to memory or peripherals (FPU, MPU, etc)

 Privileged: software has …

• use of all the instructions and has access to all resources

 ISRs operate in privileged mode

 Thread code operates in unprivileged mode unless the level is

changed via the Thread Mode Privilege Level (TMPL) bit in the

CONTROL register

Lab...

Lab 8: Memory and the MPU

8 - 10 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Lab 8: Memory and the MPU

Objective

In this lab you will

 write to FLASH in-system.

 read/write EEPROM.

 Experiment with using the MPU

 Experiment with bit-banding

Lab 8: Memory and the MPU

 Create code to write to Flash

 Create code to read/write EEPROM

 Experiment with MPU and
bit-banding

Agenda ...

USB Emulation Connection

 Lab 8: Memory and the MPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 11

Procedure

Import Lab8

1. We have already created the Lab8 project for you with an empty main.c, a startup file

and all necessary project and build options set. Maximize Code Composer and click

Project Import Existing CCS Eclipse Project. Make the settings shown below and

click Finish. Make sure that the “Copy projects into workspace” checkbox is unchecked.

2. Expand the project by clicking the + or next to Lab8 in the Project Explorer pane.

Double-click on main.c to open it for editing.

Lab 8: Memory and the MPU

8 - 12 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

3. Let’s start out with a straightforward set of starter code. Copy the code below and paste it

into your empty main.c file.

#include "inc/hw_types.h"

#include "inc/hw_memmap.h"

#include "driverlib/sysctl.h"

#include "driverlib/pin_map.h"

#include "driverlib/debug.h"

#include "driverlib/gpio.h"

int main(void)

{

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);

 SysCtlDelay(20000000);

 while(1)

 {

 }

}

You should already know what this code does, but a quick review won’t hurt. The

included header files support all the usual stuff including GPIO. Inside main(), we set the

clock for 40MHz, set the pins connected to the LEDs as outputs and then make sure all

three LEDs are off. Next is a two second (approximately) delay followed by a while(1)

trap.

Save your work.

If you’re having problems, this code is in your Lab8/ccs folder as main1.txt.

Writing to Flash

4. We need to find a writable block of flash memory. Right now, that would be flash

memory that doesn’t currently hold the program we want to execute. Under Project on

the menu bar, click Build All. This will build the project without attempting to download

it to the LM4F120H5QR memory.

5. As we’ve seen before, CCS creates a map file of the program during the build process.

Look in the Debug folder of Lab8 in the Project Explorer pane and double-click on

Lab8.map to open it.

 Lab 8: Memory and the MPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 13

6. Find the MEMORY CONFIGURATION and SEGMENT ALLOCATION MAP sections

as shown below:

From the map file we can see that the amount of flash memory used is 0x086A in length

that starts at 0x0. That means that pretty much anywhere in flash located at an address

greater than 0x1000 (for this program) is writable. Let’s play it safe and pick the block

starting at 0x10000. Remember that flash memory is erasable in 1K blocks. Close

Lab8.map.

7. Back in main.c, add the following include to the end of the include statement to add

support for flash APIs:

#include "driverlib/flash.h"

8. At the top of main(), enter the following four lines to add buffers for read and write

data and to initialize the write data:

 unsigned long pulData[2];

 unsigned long pulRead[2];

pulData[0] = 0x12345678;

pulData[1] = 0x56789abc;

Lab 8: Memory and the MPU

8 - 14 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

9. Just above the while(1) loop at the end of main(), add these four lines of code:

 FlashErase(0x10000);

 FlashProgram(pulData, 0x10000, sizeof(pulData));

 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x02);

SysCtlDelay(20000000);

Line:

1: Erases the block of flash we identified earlier.

2: Programs the data array we created, to the start of the block, of the length of the array.

3: Lights the red LED to indicate success.

4: Delays about two seconds before the program traps in the while(1) loop.

10. Your code should look like the code below. If you’re having issues, this code is located in

the Lab8/ccs folder as main2.txt.

#include "inc/hw_types.h"

#include "inc/hw_memmap.h"

#include "driverlib/sysctl.h"

#include "driverlib/pin_map.h"

#include "driverlib/debug.h"

#include "driverlib/gpio.h"

#include "driverlib/flash.h"

int main(void)

{

 unsigned long pulData[2];

 unsigned long pulRead[2];

 pulData[0] = 0x12345678;

 pulData[1] = 0x56789abc;

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);

 SysCtlDelay(20000000);

 FlashErase(0x10000);

 FlashProgram(pulData, 0x10000, sizeof(pulData));

 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x02);

 SysCtlDelay(20000000);

 while(1)

 {

 }

}

 Lab 8: Memory and the MPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 15

Build, Download and Run the Flash Programming Code

11. Click the Debug button to build and download your program to the LM4F120H5QR

memory. Ignore the warning about variable pulRead not being referenced. When the

process is complete, set a breakpoint on the line containing the FlashProgram() API

function call.

12. Click the Resume button to run the code. Execution will quickly stop at the breakpoint.

On the CCS menu bar, click View Memory Browser. In the provided entry window,

enter 0x10000 as shown below and click Go:

Erased flash should read as all ones. Programming flash only programs zeros. Because of

this, writing to un-erased flash memory will produce unpredictable results.

13. Click the Resume button to run the code. The last line of code before the while(1)

loop will light the red LED. Click the Suspend button. Your Memory Browser will

update, displaying your successful write to flash memory.

Lab 8: Memory and the MPU

8 - 16 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

14. Remove your breakpoint.

15. Make sure you have clicked the Terminate button to stop debugging and return to the

CCS Edit perspective. Bear in mind that if you repeat this exercise, the values you just

programmed in flash will remain there until that flash block is erased.

Reading and Writing EEPROM

16. Back in main.c, add the following line to the end of the include statements to add

support for EEPROM APIs:

#include "driverlib/eeprom.h"

17. Just above the while(1) loop, enter the following seven lines of code:

 SysCtlPeripheralEnable(SYSCTL_PERIPH_EEPROM0);

 EEPROMInit();

 EEPROMMassErase();

EEPROMRead(pulRead, 0x0, sizeof(pulRead));

 EEPROMProgram(pulData, 0x0, sizeof(pulData));

 EEPROMRead(pulRead, 0x0, sizeof(pulRead));

 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x04);

Line:

1: Turns on the EEPROM peripheral.

2: Performs a recovery if power failed during a previous write operation.

3: Erases the entire EEPROM. This isn’t strictly necessary because, unlike flash,

EEPROM does not need to be erased before it is programmed. But this will allow

us to see the result of our programming more easily in the lab.

4: Reads the erased values into pulRead (offset address)

5: Programs the data array, to the beginning of EEPROM, of the length of the array.

6: Reads that data into array pulRead.

7: Turns off the red LED and turns on the blue LED.

 Lab 8: Memory and the MPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 17

18. Your code should look like the code below. If you’re having issues, this code is located in

the Lab8/ccs folder as main3.txt.

#include "inc/hw_types.h"

#include "inc/hw_memmap.h"

#include "driverlib/sysctl.h"

#include "driverlib/pin_map.h"

#include "driverlib/debug.h"

#include "driverlib/gpio.h"

#include "driverlib/flash.h"

#include "driverlib/eeprom.h"

int main(void)

{

 unsigned long pulData[2];

 unsigned long pulRead[2];

 pulData[0] = 0x12345678;

 pulData[1] = 0x56789abc;

 SysCtlClockSet(SYSCTL_SYSDIV_5|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ|SYSCTL_OSC_MAIN);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);

 GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3);

 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x00);

 SysCtlDelay(20000000);

 FlashErase(0x10000);

 FlashProgram(pulData, 0x10000, sizeof(pulData));

 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x02);

 SysCtlDelay(20000000);

 SysCtlPeripheralEnable(SYSCTL_PERIPH_EEPROM0);

 EEPROMInit();

 EEPROMMassErase();

EEPROMRead(pulRead, 0x0, sizeof(pulRead));

 EEPROMProgram(pulData, 0x0, sizeof(pulData));

 EEPROMRead(pulRead, 0x0, sizeof(pulRead));

 GPIOPinWrite(GPIO_PORTF_BASE,GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3, 0x04);

 while(1)

 {

 }

}

Lab 8: Memory and the MPU

8 - 18 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Build, Download and Run the Flash Programming Code

19. Click the Debug button to build and download your program to the LM4F120H5QR

memory. Code Composer does not currently have a browser for viewing EEPROM

memory located in the peripheral area. The code we’ve written will let us read the values

and display them as array values.

20. Click on the Variables tab and expand both of the arrays by clicking the + next to them.

Right-click on the first variable’s row and select Number Format Hex. Do this for all

four variables.

21. Set a breakpoint on the line containing EEPROMProgram(). We want to verify the

previous contents of the EEPROM. Click the Resume button to run to the breakpoint.

22. Since we included the EEPROMMassErase() in the code, the values read from

memory should be all Fs as shown below:

23. Click the Resume button to run the code from the breakpoint. When the blue LED on the

board lights, click the Suspend button. The values read from memory should now be the

same as those in the write array:

 Lab 8: Memory and the MPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 19

Further EEPROM Information

24. EEPROM is unlocked at power-up. Your locking scheme, if you choose to use one, can

be simple or complex. You can lock the entire EEPROM or individual blocks. You can

enable reading without a password and writing with one if you desire. You can also hide

blocks of EEPROM, making them invisible to further accesses.

25. EEPROM reads and writes are multi-cycle instructions. The ones used in the lab code are

“blocking calls”, meaning that program execution will stall until the operation is

complete. There are also “non-blocking” calls that do not stall program execution. When

using those calls you should either poll the EEPROM or enable an interrupt scheme to

assure the operation completes properly.

26. Remove your breakpoint, click Terminate to return to the CCS Edit perspective and close

the Lab8 project.

Lab 8: Memory and the MPU

8 - 20 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

Bit-Banding

27. The LaunchPad board Stellaris examples include a bit-banding project. Click Project

Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.

28. Expand the project in the Project Explorer pane and double-click on bitband.c to

open it for viewing. Page down until you reach main(). You should recognize most of

the setup code, but note that the UART is also set up. We’ll be able to watch the code run

via UARTprintf() statements that will send data to a terminal program running on

your laptop. Also note that this example uses ROM API function calls.

 Lab 8: Memory and the MPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 21

29. Continue paging down until you find the for(ulIdx=0;ulIdx<32;ulIdx++)

loop. This 32-step loop will write 0xdecafbad into memory bit by bit using bit-

banding. This will be done using the HWREGBITW() macro.

Right-click on HWREGBITW() and select Open Declaration.

The HWREGBITW(x,b) macro is an alias from:

HWREG(((unsigned long)(x) & 0xF0000000) | 0x02000000 |

(((unsigned long)(x) & 0x000FFFFF) << 5) | ((b) << 2))

 which is C code for:

bit-band alias = bit-band base + (byte offset * 0x20) + (bit number * 4)

This is the calculation for the bit-banded address of bit b of location x. HWREG is a

macro that programs a hardware register (or memory location) with a value.

The loop in bitband.c reads the bits from 0xdecafbad and programs them into the

calculated bit- band addresses of g_ulValue. Throughout the loop the program trans-

fers the value in g_ulValue to the UART for viewing on the host. Once all bits have

been written to g_ulValue, the variable is read directly (all 32 bits) to make sure the value

is 0xdecafbad. There is another loop that reads the bits individually to make sure that

they can be read back using bit-banding

30. Click the Debug button to build and download the program to the LM4F120H5QR.

31. If you are using Windows 7, skip to step 32. In WinXP, open HyperTerminal by

clicking Start Run…, then type hypertrm in the Open: box and click OK. Pick any

name you like for your connection and click OK. In the next dialog box, change the

Connect using: selection to COM##, where ## is the COM port number you noted in

Lab1. Click OK. Make the selections shown below and click OK.

Skip to step 33.

Lab 8: Memory and the MPU

8 - 22 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

32. In Win7, double-click on putty.exe. Make the settings shown below and then click

Open. Your COM port number will be the one you noted in Lab1.

33. Click the Resume button in CCS and watch the bits drop into place in your terminal

window. The Delay() in the loop causes this to take about 30 seconds.

34. Close your terminal window. Click Terminate in CCS to return to the CCS Edit

perspective and close the bitband project.

 Lab 8: Memory and the MPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 23

Memory Protection Unit (MPU)

35. The LaunchPad board Stellaris examples include an mpu_fault project. Click Project

Import Existing CCS Eclipse Project. Make the settings shown below and click Finish.

Note that this project is automatically copied into your workspace.

36. Expand the project and double-click on mpu_fault.c for viewing.

Again, things should look pretty normal in the setup, so let’s look at where things are

different.

Find the function called MPUFaultHandler. This exception handler looks just like an ISR.

The main purpose of this code is to preserve the address of the problem that caused the

fault, as well as the status register.

Open startup_ccs.c and find where MPUFaultHandler has been placed in the

vector table. Close startup_ccs.c.

Lab 8: Memory and the MPU

8 - 24 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

37. In mpu_fault.c, find main(). Using the memory map shown, the

MPURegionSet() calls will configure 6 different regions and parameters for the MPU.

The code following the final MPURegionSet() call triggers (or doesn’t trigger) the

fault conditions. Status messages are sent to the UART for display on the host.

MPURegionSet() uses the following parameters:

 Region number to set up

 Address of the region (as aligned by the flags)

 Flags

Flags are a set of parameters (OR’d together) that determine the attributes of the region

(size | execute permission | read/write permission | sub-region disable | enable/disable)

The size flag determines the size of a region and must be one of the following:

MPU_RGN_SIZE_32B
MPU_RGN_SIZE_64B
MPU_RGN_SIZE_128B
MPU_RGN_SIZE_256B
MPU_RGN_SIZE_512B
MPU_RGN_SIZE_1K
MPU_RGN_SIZE_2K
MPU_RGN_SIZE_4K
MPU_RGN_SIZE_8K
MPU_RGN_SIZE_16K
MPU_RGN_SIZE_32K
MPU_RGN_SIZE_64K
MPU_RGN_SIZE_128K
MPU_RGN_SIZE_256K

MPU_RGN_SIZE_512K
MPU_RGN_SIZE_1M
MPU_RGN_SIZE_2M
MPU_RGN_SIZE_4M
MPU_RGN_SIZE_8M
MPU_RGN_SIZE_16M
MPU_RGN_SIZE_32M
MPU_RGN_SIZE_64M
MPU_RGN_SIZE_128M
MPU_RGN_SIZE_256M
MPU_RGN_SIZE_512M
MPU_RGN_SIZE_1G
MPU_RGN_SIZE_2G
MPU_RGN_SIZE_4G

The execute permission flag must be one of the following:

MPU_RGN_PERM_EXEC enables the region for execution of code

MPU_RGN_PERM_NOEXEC disables the region for execution of code

The read/write access permissions are applied separately for the privileged and user

modes. The read/write access flags must be one of the following:

MPU_RGN_PERM_PRV_NO_USR_NO - no access in privileged or user mode

MPU_RGN_PERM_PRV_RW_USR_NO - privileged read/write, no user access

MPU_RGN_PERM_PRV_RW_USR_RO - privileged read/write, user read-only

MPU_RGN_PERM_PRV_RW_USR_RW - privileged read/write, user read/write

MPU_RGN_PERM_PRV_RO_USR_NO - privileged read-only, no user access

MPU_RGN_PERM_PRV_RO_USR_RO - privileged read-only, user read-only

 Lab 8: Memory and the MPU

Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory 8 - 25

Each region is automatically divided into 8 equally-sized sub-regions by the MPU. Sub-

regions can only be used in regions of size 256 bytes or larger. Any of these 8 sub-

regions can be disabled, allowing for creation of “holes” in a region which can be left

open, or overlaid by another region with different attributes. Any of the 8 sub-regions can

be disabled with a logical OR of any of the following flags:

MPU_SUB_RGN_DISABLE_0
MPU_SUB_RGN_DISABLE_1
MPU_SUB_RGN_DISABLE_2
MPU_SUB_RGN_DISABLE_3
MPU_SUB_RGN_DISABLE_4
MPU_SUB_RGN_DISABLE_5
MPU_SUB_RGN_DISABLE_6
MPU_SUB_RGN_DISABLE_7

Finally, the region can be initially enabled or disabled with one of the following flags:

MPU_RGN_ENABLE
MPU_RGN_DISABLE

38. Start your terminal program as shown earlier. Click the Debug button to build and

download the program to the LM4F120H5QR. Click the Resume button to run the

program.

Lab 8: Memory and the MPU

8 - 26 Getting Started With the Stellaris EK-LM4F120XL LaunchPad Workshop- Memory

39. The tests are as follows:

 Attempt to write to the flash. This should cause a protection fault due to the fact

that this region is read-only. If this fault occurs, the terminal program will show

OK.

 Attempt to read from the disabled section of flash. If this fault occurs, the

terminal program will show OK.

 Attempt to read from the read-only area of RAM. If a fault does not occur, the

terminal program will show OK.

 Attempt to write to the read-only area of RAM. If this fault occurs, the terminal

program will show OK.

40. When you are done, close your terminal program. Click the Terminate button in CCS to

return to the CCS Edit perspective. Close the mpu_fault project and minimize Code

Composer Studio.

 You’re done.

